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ABSTRACT 

A method is described which separates synthetic deoxynucleotide phosphorothioates from their oxygenated (phosphodiester, 
“P=O”) defect species by strong-anion-exchange chromatography. using novel “soft-base” anionic eluents. The method enables the 
qualitative and quantitative assessment of P = 0 content in phosphorothioate DNA, and represents a rapid and sample-conserving 
alternative to ‘iP-NMR. 

- 

INTRODUCTION 

Synthetic DNA analogues, particularly those 
which have been modified at the phosphorus inter- 
nucleotidic linkage, now have become indispens- 
able tools for research in the field of “anti-sense 
DNA,” where blockage of translational gene prod- 
uct (protein) formation can be effected by Watson- 
Crick binding of a short (15-30 base) strand of 
DNA to an appropriate complementary sequence 
within the target mRNA. An analogue showing 
promise as a potential therapeutic agent is the phos- 
phorothioate [I] congener of DNA, where sulfur re- 
places the non-bridging oxygen at the pentavalent 
phosphorus nexus of the polymer (Fig. 1). 

The Therapeutics Group at Applied Biosystems 
has been investigating large-scale synthesis of syn- 
thetic DNA, particularly the phosphorothioate 
analogs. As a potential drug, such material must be 
rigorously characterized as to its chemical nature, 

which, in turn, demands stringent analytical criteria 
for purity (or homogeneity). 

High-performance ion-exchange chromatogra- 
phy (IEC) is being increasingly used for relatively 
rapid qualitative and quantitative profiling of syn- 
thetic DNA [2-51. Agrawal et al. [6] have recently 
reported on a high-performance liquid chromato- 
graphic (HPLC) method for characterization of 
phosphorothioate DNA, though only for octamers. 
We have extended the use of IEC to the analysis of 
20- to 27-mer phosphorothioates, and wish to re- 
port a most unusual and unexpected finding. Our 
synthetic methodology leading to the desired phos- 
phorothioates requires oxidative sulfurization [7,8] 
at the phosphite linkage during each cycle of syn- 
thesis; however, a fractional amount (0.5-l%) of 
the oxygenated (phosphodiester) species is pro- 
duced concomitantly. Cumulatively, this imcom- 
pleteness of sulfurization leads to the formation of 
significant populations of oligonucleotide phospho- 
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Fig. 1. Empirical formulae for synthetic phosphorothioate DNA 
used in this study. and detail of phosphorothioate moiety. 

rothioates containing phosphoric acid diester 
(“P = 0”) linkages. We have developed an ion-ex- 
change method of high-performance chromato- 
graphic separation of these various defect species 
using novel (“soft-base”) anionic eluents, and we 
shall demonstrate the utility of the assay in obtain- 
ing accurate profiles of “P = 0” contributions to 
several phosphorothioate synthetic analogues. Rel- 
ative to “‘P-NMR spectroscopy, the conventional 
method of ascertaining the molecular environment 
about the phosphate linkage in DNA [9], our IEC 
method is (a) readily automated, and (b) requires a 
thousand-fold less sample. 

EXPERIMENTAL 

Chemicals und reagents 
All HPLC buffer salts were reagent grade or bet- 

ter supplied by Aldrich (Milwaukee. WI. USA). 
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Acetonitrile (HPLC grade) was from Burdick and 
Jackson (Muskegon, MI, USA). All gel electropho- 
resis reagents came from IBI (New Haven, CT, 
USA). Stains-all dye was from Eastman Kodak 
(Rochester, NY, USA). 

DNA synthesis and purification 
Phosphorothioate DNA was prepared on either 

an Applied Biosystems Model 380B or 3902 Auto- 
mated DNA Synthesis instrument using standard 
protocols [lo] as suggested by the manufacturer, ex- 
cept with the substitution of 3H-1,2-benzothioi-3- 
one l,l-dioxide [7] (or an equivalent sulfur-donor 
reagent) for iodine, and reversing the normal ox- 
idation-then-cap sequence within each cycle. The 
crude DNA is subsequently purified by reversed- 
phase preparative chromatography as its 5’-O-di- 
methoxytrityl derivative according to published 
methods [ 1 11. Following detritylation and sodium 
chloride--ethanol precipitation, the recovered phos- 
phorothioate DNA is freeze-dried to a powered sol- 
id. 

NMR 
31P-NMR was performed on the following two 

instruments with their respective operating condi- 
tions: (1) JEOL GSX-500; resonance frequency, 
202.45 MHz; acquisition time, 0.655 s; pulse delay, 
6 s; pulse width, 5 ,L~S (45”) and (2) Varian Unity 
3000; resonance frequency. 121.42 MHz: acquisi- 
tion time, 1.6 s; pulse delay, 0 s; pulse width, 11 ps 
(90”). 

Ion-exchange chromatography) 
The HPLC instrumentation was as follows: Se- 

ries 410 BIO LC System, ISS-200 Auto-sampler, 
Model 1020 Data System (Perkin-Elmer, Norwalk, 
CT, USA); 759A UV Detector (Applied Biosys- 
terns, Foster City, CA, USA). The columns were 
PL-SAX (Polymer Labs., Church Stretton, UK) 
strong-anion-exchanger, 10 ,um, 100 A porosity, 1.5 
cm x 7.5 mm I.D.. and Nucleogen-DEAE 60-7 
(Macherey-Nagel. Diiren. Germany), 7 pm, 60 A 
porosity, 12.5 cm x 4 mm I.D. Mobile phases: A, 
50 mM ammonium phosphate pH 8.2-CH3CN 
(95:5, v/v); B, 1.5 M potassium bromide in 50 mA4 
ammonium phosphate pH 6.7--CH3CN (80:20, v/ 
v); C, CHSCN; D, 1.0 M sodium thiocyanate in 50 
mA4 ammonium phosphate pH 8.2. Separation of 
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the DNA species was achieved by gradient elution, 
and the various gradient profiles used are summa- 
rized in Table I. The UV monitor was set at 260 nm 
for gradients I and III and 280 nm for gradient II. 

Gel electrophoresis 
Purified deoxyoligonucleotides (ca. 0.05-0.1 opti- 

cal density units (O.D.)/lane) were analyzed by po- 
lyacrylamide gel electrophoresis (PAGE) on 15 x 
15 cm gels (20%T, 5%Ca) using 40 mM Tris-borate 
buffer at pH 8.3. Bands were visualized by staining 
with Stains-all according to the manufacturer’s sug- 
gested protocolb and quantified by scanning densi- 
tometry using a Model 300s Computing Densitom- 
eter (Molecular Dynamics, Sunnyvale, CA, USA). 

RESULTS AND DISCUSSION 

Our orifinal intent was to evaluate various silica- 
and polymer-based anionic exchange media for 
their suitability in assessing synthetic phosphoro- 
thioate chain-length homogeneity. We assumed on- 
ly marginal and not unexpected chromatographic 
differences between the phosphorothioates and 
their respective phosphodiester congeners; essen- 
tially the phosphorothioates as a class are more li- 
pophilic than phosphodiesters [6,12], and somewhat 
stronger retention of the former was anticipated. 
However, phosphorothioates 14 could not be elut- 
ed from either weak- (WAX) or strong- (SAX) 
anion-exchange supports using conventional salt 
gradients, e.g. &2 M sodium chloride, O-l .5 A4 am- 
monium sulfate, etc. Neither increasing the mole- 
fraction of the organic modifier nor varying the 
type of modifier (acetonitrile, methanol, forma- 
mide) had any effect on elution profiles. Conven- 
tional denaturants such as 7 M urea also were with- 
out effect. The corresponding phosphodiester com- 
pounds eluted smoothly as expected, however (data 
not shown). 

Changing the eluting anion to either bromide or 
thiocyanate did in fact promote elution of the phos- 
phorothioates under gradient conditions (Fig. 2). 
The profiles of compounds 1 and 2 suggested sub- 
stantial presence of so-called “deletion” or “fail- 

’ T = [g acrylamide + g N,N’-methylenebisacrylamide 
<Bis)]/lOO ml solution; C = g Bis/% T. 

b Kodak Product Publication Number JJ-11. 

TABLE I 

GRADIENT PROGRAMS USED IN THIS STUDY 

Mobile phases are identified in the Experimental section. 

Gradient Time Flow-rate Mobile phase (%) 
(min) (ml/min) 

A B C D 

I Start 
48 

4 
10 

II Start 
48 

4 
10 

III Start 
70 
10 

1.5 50 30 20 - 
1.5 0 80 20 - 
1.5 0 80 20 - 
2.0 50 30 20 - 

1.5 50 - 20 30 
1.5 10 - 20 70 
1.5 10 - 20 70 
2.0 50 - 20 30 

1.5 80 0 20 - 
1.5 0 80 20 - 
2.0 80 0 20 - 

ure” sequences (a consequence of poor coupling 
yields and/or incomplete detritylation at the 5’-ter- 
minus during each cycle of automated solid-phase 
synthesis [lo]; however, when compound 2 (“high 
P = O”, four components by IEC) was analyzed by 
PAGE-scanning densitometry, essentially a single 
band was detected (Fig. 3) inconsistent with a sus- 
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Fig. 2. IEC chromatograms of phosphorothioate DNA: (a) 1, (b) 
2, “high P=O”, (c) 2, “low P=O,” (d) 3, (e) 4, conditions per 
gradient I; (f) 1, (g) 2, “high P = O”, conditions per gradient III. 
Roman numerals indicate constitutive peaks of each analogue 
(see Tables I and II). Column: PL-SAX at 1.5 ml/min flow-rate. 
Approximately 10-20 pg of DNA was injected on-column per 
analysis. 

Fig. 3. Computing densitometric scan of compound 2 (“high 
P= 0,” see Fig. 2b) following slab-gel electrophoresis and stain- 
ing. Migration is from right (top) to left (bottom). Band 3 = 
full-length 21-mer (97%); band 2 = 20-mer (n- 1) impurity 
(2.8%); band 1 = 19-mer (n - 2) impurity (0.2%). 

petted high degree of chain-length heterogeneity. 
IEC was clearly revealing heterogeneity within the 
molecule, though not as a consequence of length 
variability. 

Isolation and 31P-NMR spectroscopy of IEC-re- 
solved components 

To examine further the nature of the constitutive 
elements forming 1 and 2, approximately 50 mg of 
each were taken for preparatieve IEC, where 10 mg 
aliquots were chromatographed on the 15 cm x 7.6 
mm I.D. PL-SAX column using Gradient II as de- 
scribed under Experimental. The largest three com- 
ponents (peaks I, II and III) from each compound 

TABLE II 

DETERMINATION BY 31P-NMR OF % P=O OCCUR- 
RING IN CONSTITUTIVE SPECIES OF SELECTED PHOS- 
PHOROTHIOATE DNA ANALOGUES (1 AND 2) 

Peak %P=O 

Found Theoretical 

1 2 1 2 

I 0.0” 0.1’ 0.0 0.0 
II 5.1” 3.6” 3.8 (l/26) 5.0 (l/20) 
III 8.8” 7.7b 7.7 (2/26) 10.0 (Z/20) 
IV N.D.’ N.D. 11.5 (3/26) 15.0 (3/20) 

n 500 MHz, quantified by peak height. 
b 300 MHz, quantified by resonance integral (area). 
’ N.D. = Not determined. 
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Fig. 4. 31P-NMR spectra of (a) 2, “high P = 0,” and (b) 3. Instrument: Varian Unity 3000, conditions per Experimental. Signal at 54-56 
ppm is phosphorothiate P= S. and signal at - 1 to - 3 ppm is phosphodiester P = 0. 

were accumulated until 2-12 mg each were reco- 
vered. Following desalting and quantification by 
UV spectrometry the isolated materials @O-95% 
pure) were lyophilized, then reconstituted in 
HPLC-grade water or deuterium oxide for 3*P- 
NMR studies. Table II summarizes the results for 
Peaks I, IT and III of 1 and 2, respectively. 

Resonances in the 31P-NMR are well-resolved 
and conclusive for, (1) (RO)? P= O(S-), 50-60 

ppm, and (2) (RO), P=O(O-), (-)5-O ppm [13]. 
Reference 31P-NMR Spectra for 1 and 2 are shown 
in Fig. 4. These data clearly show that the IEC pro- 
files are in fact indicating the presence of oxygenat- 
ed defect species of each parent phosphorothioate, 
and moreover, the distribution of these defect spe- 
cies can be described mathematically as terms of the 
binomial expansion series, (s+_I’)“. 
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TABLE III 

COMPARISONS BETWEEN CALCULATED AND ACTUAL VALUES OF OXYGENATION DISTRIBUTION AT INTER- 
NUCLEOTIDIC PHOSPHATE LINKAGES OF SEVERAL DNA PHOSPHOROTHIOATE ANALOGUES 

Calculated values were found by solving the first four terms of the general equation (x + JJ)” as developed in the text, where x (P= S) and 
y (P=O) were obtained from 3’P-NMR”, and actual values were determined by IEC. 

Compound P= S” (P=S),, (P=S),_,, (P=O), (P=S),_,, (P=O),, (P=S),_,, (P=O),, 
Peak I (%) Peak II (%) Peak III (%) Peak IV (%) 

Calc. Found Calc. Found Calc. Found Calc. Found 

1 99.3 83.3 83.7 15.3 14.1 1.35 1.9 0.07 0.3 
1 98.3 64.03 64.5 28.8 29.0 6.2 5.6 0.9 0.8 
1 98.0 59.1 58.1 31.4 29.4 8 9.8 1.3 2.7 
2 99.6 92.3 90.0 7.4 7.9 0.3 <2 40.1 <0.5 
2 97.3 57.8 52.4 32.1 33.5 8.5 11.3 1.4 2.8 
3 99.7 94.4 93.8 5.4 5.9 <0.2 <0.5 <O.l <0.5 
4 99.7 94.4 93.0 5.4 7.0 <0.2 40.5 <O.l <OS 

y From alP-NMR, where % P=S = 100 x integral area (P=S)/integral area [(PCS) + (P=O)J, and % P=O = 100 x integral area 
(P=O)/integral area [(P=S) + (P=O)]. 

Mathematical depiction of peak profiles 
Our chemical pathway for phosphorothioate 

DNA synthesis requires oxidative sulfurization at 
the tervalent phosphorus (phosphite) intermediate 
at each cycle of deoxynucleotide monomer addi- 
tion. Due to adventitious chemical side-reactions, a 
certain (presumably constant) proportion of phos- 
phite is also converted to the oxo-form [8] per cycle. 
Letting x and y be the mole-fractions of phospho- 
rothioate and phosphoric acid diester linkages, re- 
spectively, then for a 27-mer (26 internucleotidic 
linkages) (x+ y)“j = x2‘j + 26~~~~ + 325 x24y2 + 
2600 x23y3 + . . . etc. At 98% overall sulfurization 
(x = 0.98) and 2% oxygenation (V = 0.02), the 
numerical values of the first four terms in the bino- 
mial expansion are 0.591 + 0.341 + 0.08 + 0.013. 
The first term represents the relative abundance of 
the fully thiolated (P( = S) material, the second term 
represents the relative abundance of the aggregate 
of all species containing a single oxygen, the third 
term represents all species containing two oxygens, 
the fourth term represents all species containing 
three oxygens, and so forth. Further correlations 
between 31P-NMR and IEC data are shown in Ta- 
ble III, where very good agreement between expect- 
ed and actual IEC profiles was obtained. Therefore, 
by examination of the IEC profile of a synthetic 
phosphorothioate DNA, one may be able to com- 

pute the net or aggregate P = 0 contribution to the 
molecule using the general formula: %P= S = 
(peak height/lOO)l!“-’ x 100, where n = number 
of deoxynucleotide residues and peak height is that 
of the last eluted peak in the chromatogram, and 
%P=O = 100 - (%P=S). 

General comments 
The ability of bromide and thiocyanate to elute 

smoothly phosphorothioate DNA (16 to 27 bases) 
from WAX or SAX media, as opposed to the gener- 
al ineffectiveness of traditional high-salt gradients, 
may be rationalized by invoking the principle of 
“hard” vs. “soft” bases [14] (or nucleophiles). The 
sulfur anion is regarded as a “soft” base [15], and, 
indeed, the net negative charge residing within each 
phosphorothioate moiety appears to be principally 
located on sulfur [16]. This suggests that the strong 
ion-pair formed between the thiolo (- ) and qua- 
ternary ammonium ( + ) exchanger can be most effi- 
ciently disrupted by a “soft” competitive anionic 
species, such as thiocyanate or bromide. However, 
we did note that the latter salts were equally effec- 
tive (at low molarity) in displacing “natural” phos- 
phodiester congeners of compounds 14 (data not 
shown), implying additional applications for these 
systems in ion-exchange analysis of synthetic de- 
oxyoligonucleotides. 
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